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The effect of particle size distribution on the 
rheology of an industrial suspension 
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T. A. ROBERTS 
ICI Dental ICI Pharmaceuticals, Macclesfield, Cheshire, SKIO 2NA, UK 

The viscosity of a proprietary dental composite material, consisting of suspensions of crushed 
glass in a polymeric liquid of a 50/50 w /w  urethane dimethacrylate and triethylene glycol 
dimethacrylate mixture has been measured using a tube viscometer. Narrow-sized fine (ulti- 
mate particle size of 0.2#m, which agglomerate to form particles with a mean diameter of 
0.05#m), medium (O'5o = 1.7#m) and coarse (25.5#m) particle fractions were used as well as 
bimodal and trimodal mixtures. Total solids concentrations from 17% to 76(77)% by volume 
were covered. The results were analysed using extensions of the Farris theory for mixtures and 
reduced to the viscosity functions, h; (~0i), for the three monomodal fractions. They were fitted 
to the Mooney, Krieger-Dougherty or the three-parameter Cheng equation. The effect of par- 
ticle size distribution on the Krieger-Dougherty parameters is discussed. The viscosity functions 
summarize the experimental results and allow the viscosities of bimodal and trimodal mixtures 
not measured to be predicted. The use of the predictions for the formulation of the dental 
material is discussed. The methodology described can be used in the design of other suspen- 
sion products. 

1. Introduction 
This paper describes an invesigation into the effect of 
particle size distribution (PSD) in the shear viscosity 
of a proprietary dental composite material, "Occlusin" 
for class I and II restorations. This is a light-cured 
alternative to amalgam, made up of a mixture of 
very Ligh concentration of an inorganic filler sus- 
pended in a polymeric liquid. The filler is a mixture of 
three size fractions of crushed glass. The suspending 
liquid is composed of a resin of 50/50 w/w urethane 
dimethacrylate and triethylene glycol dimethacrylate 
mixture, camphorquinone tertiary amine catalyst and 
surfactants, of which there are two sets. The purpose 
of the work is the determination of the mix of filler 
particle sizes to impart optimal properties on the 
product in respect of manufacture, ease of use by the 
dentist and properties after being placed and cured. 

It is known, although not generally as yet, that 
the measurement of the viscosity of high solid content 
materials, or dense suspensions, is not a straight- 
forward problem [1-3]. This means that a rather 
elaborate programme of measurements has to be car- 
ried out if one is interested in understanding the 
fundamental properties of dense suspensions. Such a 
programme, because of the time and cost involved, 
cannot usually be contemplated in an industrial 

research laboratory. However, simpler measurements 
can be carried out and the results, even though incom- 
plete in a scientific sense, can be useful industrially if 
they are interpreted appropriately. This paper will 
illustrate this fact. 
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We have obtained tube viscometer results on dense 
suspensions and, using existing knowledge of the 
rheology of suspensions, interpreted the viscosity con- 
centration relationships and the effect of PSD. In this 
way, limited data have been used to make predictions 
on optimal particle size distributions. The meth- 
odology used can be useful in solving other rheological 
problems in industry. 

2. Experimental 
2.1. Material  
The filler particles were crushed borosilicate glass of 
three size fractions. The actual size distributions, as 
measured using a Micro-Meritics Sedigraph, are 
shown on Fig. 1. The fines were a fumed silica (0X50) 
supplied by Degussa. It had a nominal ultimate particle 
size of 0.02 ~tm, which agglomerated to form particles 
of mean diameter 0.05ktm. The fines particle size 
distribution was not measured. Some PSD parameters 
have been extracted and given in Table I. 

The polymer resin was a 50/50 w/w of urethane 
dimethacrylate and triethylene glycol dimethacrylate. 
Its viscosity over a range of temperatures is shown on 
Fig. 2. 

T A B  L E  I Particle size d is t r ibut ion pa rame te r s  

d:5 ds0 d75 d75 
(pm) (tim) (#m) d25 

Coarse  23 25.5 31 1.3478 
Med  1.1 ! .7 2.4 2. i8 

Fine - (0.05) - (3 say) 
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Figure 1 Particle size distributions of the 
filler particles 

Two proprietary surfactants were used. The amounts 
used in each suspension were calculated based on the 
surface of the filler, so that a layer would be adsorbed 
onto the surface of  the particles assumed to be spheri- 
cal. The actual amounts used are given in Table II. 
The large particles were not coated with a surface. 

A pre-mix was prepared by adding the fine particle 
size filler to the resin in a dough mixer. After mixing 
the material was transferred to a twin roll mill for 
further processing. This produced the final suspension 
of  the filler in resin. The medium size filler (2 #m) was 
similarly mixed with resin and additives in a dough 
mixer and twin roll mill. The two separate suspensions 
of fine and medium size fillers in resin were then placed 
in a dough mixer and the large fraction (25/~m) filler 
was added during mixing. The material was then pro- 
cessed further on a twin roll mill. No catalyst was 
added to suspensions made for theological testing. 

2.2. Viscometer used 
The viscometer used was a standard Davenport  Piston 

4 .4  

4 .0  

3 .6  

~ 3.2 
v 

2 .8  

2 . 4 - -  

2 .0  I I I I I I I 
8 12 16 20 

T(~ 

Figure 2 Viscosity of suspending liquid plotted against temperature. 

Extrusion Rheometer (supplied by Daventest Ltd, 
Welwyn Garden City, Hertfordshire). This has been 
developed from the original design of Benbow et al. 

[4]. A description of an earlier commercial version is 
given in Cheng [5]. 

2.3. Exper imenta l  p r o c e d u r e  
The material was placed in a barrel which had an 
extrusion die at the exit end. Different size dies were 
used. The material was extruded through the die by a 
piston the speed of which can be varied. As material 
was forced through the die the pressure was measured 
by a pressure transducer. From the piston speed and 
corresponding pressure, shear rate and shear stress 
values were calculated. Measurements at a series of 
piston speeds gave a number of values of  shear rate 
and shear stress. 

The orifice die pressure P0, in (Pa) was measured to 
take into account the end effect [6]. The orifice die was 
a shallow convergent cone varying in thickness from 
1 to 3 mm depending on the diameter of the outlet. 
(The smaller the die outlet diameter the thicker the 
orifice die.) 

A summary of the tests carried out is set out in 
Table II. 

2.4. Preliminary data treatment 
2.4. 1. End-effect correction, and shear stress 

and shear rate calculation 
The initial data reduction was carried out according to 
Cogswell [6]. End-effect correction was made by 
subtracting the orifice die pressure, P0, from the tube 
pressure, PL- The shear stress was then calculated 
using the equation 

D PL -- Po (1) ~w - 4 L 

where rw is the wall shear stress (Pa), D the tube 
diameter (m) and L the tube length (m). The apparent 
shear rate was calculated from the volume flowrate, Q, 
(m 3 see-'  ) 

320 
7A -- ~zD 3 (2) 

where ~)A is the apparent shear rate (sec-1).The 
plots of Vw against ~)A a r e  given in Figs. 3 to 13. 
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Figure 3 Flow curves for monomodal  fines sus- 

pensions (tube dimensions: (/,A 16 x 1 mm, o e  

32 x 2mm, Dill 32 x 4 m m )  

2.4.2. Preliminary a s s e s s m e n t  o f  f l o w  curve 
results 

The flow curves on Figs 3 to 13 are clearly non- 
Newtonian and do not follow any of  the well known 
models, such as power law, Bingham plastic, Casson 
and Cross. If  one general shape is to be ascribed to the 
suspensions as a whole, the master flow curve would 
show a yield stress as the shear rate tends to zero. As 
the shear rate increases, it curves upwards, but only to 
level out again to give an upper constant stress as 
shear rate becomes very large. The inflexion shear rate 
decreases as the concentration increases. 

For  the very high concentrations, there is a sugges- 
tion that the curve does not level out entirely, but that 
it curves upwards again as the shear rate is increased. 
In two distinct cases, Figs 3 and 10, the flow curve 
shows a discontinuity which is reminiscent of behaviour 
in rotation viscometers [1]. This must be germane to 
the fact that flow curves of very high concentration 
suspensions do not always follow the master curve as 
described above. 

The results for the monomodal  fines suspensions 
(Fig. 3) show, as expected, an increase in viscosity as 

concentration is increased. However, results obtained 
using tubes of different diameters do not agree. Even 
with identical tubes, there are large differences. Both 
effects appear to increase as concentration is increased. 
Monomodal  medium suspensions also show the diam- 
eter effect (Fig. 4). 

The bimodal suspensions based on 17% fines 
appear to be well-behaved (Fig. 5). Those based on 
higher fines concentrations gave viscosities which 
decreased as medium particles were added over a 
certain concentration range (Figs 6 and 7). The data at 
15.1 and 120 s -~ were replotted against concentration 
to bring out this behaviour (Figs. 14 and 15). They 
also emphasize that the bimodal results were subject 
to both poor  reproducibility and the diameter effect, 
particularly in Figs 7 and 15. 

Most of the trimodal data do not show viscosity 
reduction with increase of concentration, except on 
Figs 8 and 11. Again the data have been replotted in 
Figs 16 and 17. The viscosity in Fig. 16 appears to 
oscillate with concentration, which does not seem 
likely to be due to poor  reproducibility. The data for 
the trimodal suspensions are not as comprehensive as 

10 e 

57% 

50% 

105 

104 

g. 

103 I I I 
10 o "[01 102 103 

"/A (sec 1 ) 

104 
Figure 4 Flow curves for monomodal  mediums sus- 

pensions (tube dimensions: zx 16 x 1 mm, O 32 x 
2 m m , [ ] 3 2  x 4mm). 
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Figure5 Flow curves for bim0dal (17% 
fines + mediums) suspensions (tube dimen- 
sions: zx 16 x lmm,  o 32 x 2mm, [] 32 x 
4 mm). 

the bimodals, but what is available (Figs 9 and 10) 
suggests that their scatter and diameter effect were not 
as bad. 

2.4.3. Interpolat ion for viscosity at lOOsec -1 
The dependence of  the suspension viscosity on shear 
rate and PSD is clearly a complex matter. It does not 
seem possible to use the flow curves as they stand to 
make predictions. It was decided to concentrate on a 
specific shear rate of 100 sec-1 to make further pro- 
gress. The plotted flow curves were interpolated (and 
extrapolated in some cases) by eye to obtain the 
100 sec-~ viscosity. These values are given in Table II. 

2.4.4. Temperatur e correction 
Test temperatures varied widely between 12.5 and 
22~ (Table II). It was therefore necessary to correct 
for temperature. This was done by assuming that the 
viscosity-temperature relationship of the suspension 
was given by that of the suspending liquid alone, i.e. 

qs (20) - 0o (20) 
qo (T) t/~ (T) (3) 

where t/s (T) is the suspension viscosity at 100 sec -~ at 
temperature T, irrespective of monomodal  or mixed 
suspension and r/0 (T) is the viscosity of the suspend- 
ing liquid (Pa sec). Experimental viscosity results for 
the suspending liquid plotted on Fig. 2 were used. 
Values read off the fitted straight line were used to 
calculate t/s (20) and t&. The experimental r/, (T) and 
the derived % are given in Table II. 

2.4.5. Assessment of reproducibility 
The standard viscosities, at 100sec -~ and 20~ 
obtained on suspensions of the same concentration 
and tested in tubes of  the same diameter were used to 
assess reproducibility. They were expressed as the 
fractional difference and plotted on Fig. 18 

smaller */s (20) 
FD = 1 - -  (4) 

larger r/s (20) 

where FD is the fractional difference in viscosity read- 
ings for the same concentration and tube diameter. 

Differences of up to 40% in FD were apparent. Of 
more interest, however, is the indication that (i) FD 
increased as concentration was increased and (ii) FD 
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Figure 6 Flow curves for bimodal (24% fines + 
mediums) suspensions (tube dimensions: zxA 16 
x lmm,  Oe  32 x 2ram, D I  32 x 4ram). 
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Figure 7 Flow curves for bimodal (36% fines + 
mediums) suspenions (tube dimenions: AA 16 
X 1 mm, O l  32 x 2mm, n l  32 x 4mm). 

was larger for the monomodal  fine suspensions com- 
pared with the bimodal fine + medium suspensions. 
That  is FD was larger for suspensions with a narrower 
PSD. These variations are as expected from published 
results on other dense suspensions [2, 3, 5]. 

2.4.6. Assessment of tube diameter effect 
It is often found in suspensions that the Zw against ~)A 
curves for different diameters do not fall on a master 
curve. I f a  larger tube curve lies above that of a smaller 
tube (i.e. has larger %), the difference may be ex- 
plained in terms of the wall-slip effect. The rw against 
9A curves of  this work did not show such consistent 
behaviour. A more thorough assessment was therefore 
carried out in terms of the fractional difference using 
the 100sec ] viscosities. 

smaller tube r/s (20) 
FD2 = 1 -  (5) 

larger tube t/s (20) 

where FD2 is the difference in viscosity readings for 
the same concentration and different tube diameter. 
These quantities are plotted on Fig. 19. 

It can be seen that (i) values of FD2 up to 60% were 

obtained. This was larger than the reproducibility 
figure of 40% and meant that the differences between 
tubes of different diameters were not only caused by 
experimental scatter. (ii) FD2 was not always positive, 
which meant that the wall-slip effect cannot be the 
only explanation of the differences. There is a hint that 
(iii) FD2 was negative for low concentrations and 
increased to become positive at high concentrations 
and (iv) at the same concentration, FD2 was reduced 
as one goes from monomodal to bimodal and trimodal 
suspensions (i.e. FD2 depended on PSD). 

The significance of these observations is discussed 
later in Section 4.1.4. Here it can be concluded that the 
viscosity of suspensions does depend on tube diameter. 
As no clear systematic variation was obtained, the 
differences found in the present results cannot be  
reduced further. They have therefore been treated as 
experimental scatter in the data anylsis below. 

2.4. 7. Calculation of effective volume 
concentration 

The volume of surfactant in the suspension was taken 
into account in the calculation of the effective volume 

10 5 
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68~176 ~, o , ~  ~ 

104 

106 107 

103 I I I 

100 101 102 103 
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104 

Figure 8 Flow curves for trimodal [(17% fines + 
mediums) 36% + coarse] suspensions (tube 
dimensions: zx 16 x l mm, o 32 x 2mm, 
[] 32 x 4mm). 

359 



d 

10 6 

10 5 

10 4 

70% 

55% 

60% 

10 a I I I 

100 101 102 103 

")A ( sec  1 ) 

Figure 9 Flow curves for trimodal [(17% fines + 
mediums) 50% + coarse] suspensions (tube 
dimensions: zx 16 x lmm 2, 0 32 x 2mm 2, 
v48 x 3ram 2,[]32 x 4ram 2) 

10 4 

concentrations. The volumes associated with the fine 
and medium particles are given in Table II. The 
volume associated with the coarse particles was 
assumed to be negligible. In the equations for q0 in 
Section 3.1, the following were used 

V C ~ VCpar t V M ~ VMpar t -1- VMsur f 

V F = V F p a r , - ~ V F s u r f  (6) 

where V,o,,, is the volume fraction of  particles as such 
and V~,orf is the volume fraction of surfactant associated 
with component i (V/V). The subscripts C, M and F 
refer to coarse, medium and fine particles, respectively. 

3. D a t a  ana lys is  
3 .1 .  T h e o r y  
The  re la t ive  v iscosi ty  at  100see -~, r/R , was used in  

data analysis from this point on. The basis was the 
Farris theory [7], but his approach has been 
generalized as below. 

10 6 

105 

! 
104 

73% ~ O  ~ , . ~ . ~ - ~  67% 
o 65% 57% 

55% 

v = 46% 

103 

1o, 1'o, 1'o, 1o, 
~A ( see-1 ) 

Figure 10 Flow curves for trimoda] [(24% fines + mediums) 45% 
+ coarse] suspensions (tube dimensions: zx 16 x 1 mm 2, 0 32 • 
2 mm 2) 

3 6 0  

In Farris' theory, the viscosity of a bimodal suspen- 
sion of spheres is calculated by treating the mixture 
of fine particles and the suspending liquid as a hom- 
ogeneous fluid. If  this is made up of V 0 the volume of 
suspending liquid and V~ the volume of  the fines, then 
it would have a viscosity of 

r/, = h(q0~)~/0 (7) 

where the effective volume concentration of  the fines 
is 

K 
~o, = ( 8 )  

v 0 + v ,  

and h(~0~) is some function which can be determined 
either by theoretical modelling or experiments. If the 
volume of the coarse particles in the suspension is Vz 
and they are considered to be suspended in the hom- 
ogeneous mixture of liquid + fines, the suspension 
will have a viscosity of 

rt~ 2> = h(~02)q, = h(q)2)h(qh)~1o (9) 

where the effective volume concentration of the coarse 
is 

(10) 
~02 = v 0 +  v , +  v~ 

Thus the relative viscosity of the bimodal suspension 
is 

r/~> = h(cpl )h(cp2) (11) 

and can be calculated from the effective concentra- 
tions, ~p~ and ~P2, and the function h(~p). 

The true volume concentrations of the fines and 
coarse in the suspension are 

v, v~ 
v~ = Vo+ v , +  K v~ = v 0 + K + ~  

(12) 
and the total solids concentration is 

V = 2) 1 "~  V 2 (13) 

where Vii is the volume of component i(V/V). The 
effective volume concentrations can also be calculated 



106 

105 

104 

78% 

60% 

103 

100 

I I I 

101 102 103 

~;'A (see- 1 ) 

104 

Figure 11 Flow curves for trimodal [(24% fines + 
mediums) 52% + coarse] suspensions (tube 
dimensions: o 32 x 2 ram 2, v 48 x 3ram 2, 
[] 32 • 4 m m  2) 

from these equations 

Also 

7.) 1 
qh - ~o2 = v2 (14) 

1 - -  v2 

( 1  - v )  = ( 1  - q 0 , ) ( 1  - ( P 2 )  ( 1 5 )  

The relative viscosity of  a trimodal suspension can be 
derived in the same way, by assuming that the mixture 
of  suspending liquid + fines + mediums behaves as 
a homogeneous fluid to the coarse, and the mixture of  
liquid + fines behaves as homogeneous to the 
mediums. It is 

tl(~)= h(~o,)h(q~2)h(~o3) (16) 

Where 

'U  I 7)  2 

(~ - 1 -- v 2 -- v 3 q~2 - 1 -- v3 rP3 = v3 

(17) 

(1 - v )  = (1 - ~ o l ) ( l  - ~02) (1 - ~03) ( 1 8 )  

Farris '  theory was based on various explicit and 
implicit assumptions which can be relaxed to make it 

106 

105 

104 

•i•O 55% 

70% 
60% 

103 I I I 
10 o 101 10 2 10 3 

~A (sec -1 )  

more generally applicable. The first assumption is that 
the particles are spherical, but this fact is not specifi- 
cally invoked in the mathematical  derivation and so 
it seems that the approach can be applied to non- 
spherical particles. 

Farris implicitly assumed that the particles are 
rigid. This will apply to suspensions of  particles with 
adsorbed surfactant assuming that the adsorbed layer 
is not deformable, a reasonable assumption if the 
particle surfaces are fully covered by surfactants, as in 
this work. Section 2.4.7. describes how the volume of 
adsorbed surfactant is taken into account in calculat- 
ing the effective volume concentrations, (Pi. 

Although Farris considered mixed suspensions of  
fractions of  particles of  unique sizes, this need not be 
a restriction. The important criterion is that the smaller 
particles should be very much smaller than the larger 
ones, such that the mixture of  liquid and the smaller 
particles behaves as homogeneous to the larger par- 
ticles. In mixtures of  narrowly sized fractions, this 
condition can clearly be attained when the largest 
particle of  the smaller fraction is very much smaller 
than the smallest of  the larger fraction. In Farris '  
paper, experimental results indicated that the small 

104 

Figure 12 Flow curves for trimodal [(36% fines + 
mediums) 42% + coarse] suspensions (tube 
dimensions: O 32 x 2 m m  2,[]  32 x 4 r am 2) 
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Figure 13 Flow curves for trimodal [(36% fines + 

mediums) 5 2 %  + coarse] suspensions (tube 
dimensions: O 32 x 2 r a m ,  v 48 x 3 m m ,  

[] 32 x 4 m m ) .  

1 0 4  

particles should be less than 1/10th the size of  large 
particles for their size to be negligible. Other theories 
[8, 9] do not specifically make this demand. 

Farris assumed that the function h(~o) is the same 
for all size fractions. This restriction is not necessary; 
there is experimental evidence that h(q~) can vary with 
particle size and PSD. Thus Equation 7 for mono- 
modal suspensions becomes 

(qR)i = h,(~&) (19) 

where hi(q~i) is the viscosity function for component i 
the same as (q~)) for component i. For bimodal sus- 

pensions, Equation 11 becomes 

t/~ ) = h,(qh)hz(rp2) (20) 

and for trimodal suspensions, Equations 16 becomes 

#/(R 3) = hl((Pl  )h2((p2)h3(q~3 ) (21 )  

In this work, we wish to explore how these generaliz- 
ations of  Farris' theory apply to our suspensions. 

3.2. Data analysis procedure 
Fig. 20 summarizes the data analysis procedure. 
Firstly, the experimental monomodal  fines viscosity 
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Figure 14 Variation of% at given ?A with concentration for bimodal 
(24% fines + mediums) suspensions (tube dimensions: zx 16 x 

l m m ,  o l  32 x 2 m m ,  [311 32 x 4 m m ,  o zx JA = 120sec  l T 

�9 ~)g = 15.1 sec-l). 
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Figure 15 Variation ofz  w at given ;S A with concentration for bimodal 
(36% fines + mediums) suspensions (tube dimensions: zx 16 x 
l m m ,  o t  32 x 2 r a m ,  n i l  32 x 4 m m ,  zx[::lo~) A = 120sec  1, t1113; a 
= 1 5 . 1 s e c - l ) .  
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Figure 16 Variation of Zw at given ~A with concentration for tri- 
modal [(17% fines + mediums) 36% + coarse] suspensions (tube 
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Figure 17 Variation of z w at given ?)A with concentration for tri- 
modal [(24% fines + mediums) 52% + coarse] suspensions (tube 
dimensions: o o  32 x 2 m m ,  v,v 48 x 3 m m ,  r n l  32 x 4 m m ) .  

was curve fitted to determine an equation for h~(~0~), 
using the procedure to be described in Section 3.3. 

The resulting h~(qh) equation was used with the 
experimental bimodal viscosity to derive h2(~02) data. 
From Equation 20, 

h2(cP2) - (22) hl(~01) 

These were taken together with experimental mono- 
modal viscosity for the mediums, (r/~))2 and curve 
fitted to determine an equation h2(q02). 

The resulting hz(r#2 ) and h~(~01 ) equations were then 
used together with the experimental trimodal viscosity 
to derive h3((03) data. From Equation 21, 

h3(q~3) - (23) 
h l ( q ) l  )h2(q)2  ) 

These were then curve-fitted to determine an equation 
for h3((p3 ). 

The three equations for hi ,  h2 and h 3 c a n  be used to 
predict the viscosity of bimodal and trimodal sus- 
pensions of any composition (Section 3.6). 

3.3. Curve fitting to determine equation for 
hi(~oi) 

These were then curve fitted to determine an equation 
suspension viscosity [10]. Amongst the more popular 
ones are the one-parameter Mooney equation [11] 

2.5~o ) 
r/~ ) = exp 1 - ~/Vm (24) 

where Vm is the maximum volume fraction, and the 
two-parameter Krieger-Dougherty equation [12], 

1 kvm 

(1 
These were chosen for trials in this work. Also used 

v s 40 
u .  

20 40 60 

v (%) 

i 

80 

i 

100 

Figure 18 Reproducibility in results obtained using tube of 
same dimensions (o monomodal fines, [] bimodal (fines + 

mediums) F D  = I - (smal ler  q (20)/ larger  ~/(20)). 

363 



2~ 
u_ 

80 

60 

40 

20 

0 

20 

40 

-60 

-80 

20 

/? 
F,NESI  / \  

I1~ I \ 
~176 o , u & 

I I 

g 
�9 

BIMODAL 
MONOMODAL FINES + MEDIUM 

I I I ~ /~  I I I 
40 30 50 

v (%) 

I . ,h 

\ / "d 

TRIMODAL 

I I I I 
40 60 

Figure 19 Effect of tube diameter (32 x 2 mm 
and 32 x 4 mm tubes) F D 2  = 1 - (smaller tube 
q (20)/bigger tube */(20)) .  

was the equation proposed by Cheng [10] 

1 + Aq~ + B(02 
r/~ ) = (26) 

1 - ( OlVm) 

where A and B are constants. 
The general form of the Cheng equation allows for 

polynomials of increasing order to be used as the 
numerator if the data so warrant. In this work the 
three-parameter version was used. All three equations 
have the two necessary features, (i) ~/~) = 1 at ~0 = 0 
and (ii) r/~ ~ tending to infinity as q~ tends to vm. 

In the curve fitting, we wished to determine which of  
the three equations best fit the data and also to 
determine the best values of the parameters for the 
fitted equation. The criterion for best fit was chosen to 

be minimum averaged residue 

[Zllog log (expt r/~ )) - log log (cal q~))[] 
R = 

number of data points 

(27) 

The reason for using log log q~ is this. Experimen- 
tal data of  viscosity against concentration are known 
to become more scattered the higher the concen- 
tration [13], even when log ,/~) is plotted against v, for 
example Fig. 21 [14]. However, if log log q(~) is plotted 
against v, as in Fig. 22, the data are more evenly 
spread about the mean curve. It can then be assumed 
that the spread has the same weight irrespective of 
concentration and the best-fit curve is obtained when 
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the average residue (or residue for short), R, is mini- 
mized as the values of  the parameters are varied. 

Then by comparing the minimum R for the three 
equations, the one with the lowest minimum R can be 
taken as the best-fit equation. 

3.4. Optimization procedures 
With one parameter,  Vm, the optimization of  the 
Mooney equation was straightforward. The residue, 
R, was calculated for various values of  Vm up to a 
maximum of  1 (as the fractional volume of  particles 
cannot exceed unity). A plot of  R against Vm then 
allowed the minimum R and the corresponding Vm to 
be determined. The accuracy chosen was three decimal 
places in "Vm. (Note that there is also a lower limit to 
Vm, namely the largest v in the data being fitted.) 

For  the Krieger-Dougher ty  equation, a similar 
procedure was followed, with both v m and k being 
varied, k is the intrinsic viscosity in the Krieger-  
Dougherty equation. Values of  R were plotted on a 
two dimensional (Vm, k) graph. With sufficient values 
of  R, the averaged residue, contour lines of  constant R 
were drawn and the location of the minimum R and 
the corresponding Vm and k were found. By repeating 
the calculation in the minimum area, the optimal 
parameters were determined to the chosen accuracy of 
three decimal places for v m and one decimal place for k. 

For  the Cheng equation, with three parameters,  the 
optimization if made in a similar way as described 
above would be tedious and so a computerized search 
technique was used. The first method tried was the 
rotating simplex method [15], but this gave problems 
with convergence. Too large a simplex overshot the 
minimum. A small simplex converged in some local 
minimum which was far removed from the correct 
solution or it took a long time to find the optimum. 
For  an efficient optimization, it is necessary to have a 
strategy for varying the size of  the simplex as the 
search progresses. Because of this and other con- 
vergence problems, an alternative optimization pro- 
cedure was used. 

This was a slope-marching routine [16] which varies 
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Figure 23 Viscosity function of fines suspensions. (O experimental). 

one parameter  at a time, finding the direction in which 
R was reduced and varying the parameter  until it 
started to increase. The next parameter  was then 
varied similarly, and so on. In this work, the par- 
ameters were varied in the order Vm, A and B, with the 
conditions that vm must not exceed 1 and A and B must 
be positive. The art of  using this routine is to make the 
correct choice of  step size. The Cheng equation is 
more sensitive to variations in Vm than A and B, and 
so the step size for Vm was set at 100th of the steps of  
A and B. Experience showed that initial steps for 
A and B equalling 1 gave satisfactory results. Sub- 
sequently the steps were reduced by a factor of  10, 
giving an accuracy of  one decimal place in the final 
values of  A and B (and 3 decimal places in the value 
of  Vm). Although this procedure was not very fast, in 
that it had to calculate R at every step, it was found to 
be adequate for this work. (More rapid slope-marching 
routines are available [16] if the optimization pro- 
cedure is to be repeated regularly.) 

On Figs 24 and 25, at low effective volume con- 
centration, some values of  hi(q0i) (which are the same 
as (r/(~))i, the relative viscosity of  a monomodal  sus- 
pension in the ith component)  are less than unity and 
log log t/~ ) is not real. I f  we simply ignore the data with 
q~) < 1 and include those with flu ) > 1 in the calcul- 
ation of  R, the fitted curve would be biased. It was 
therefore decided to ignore all data for ~0i less than the 
value above which no rl~ ~ data are less than unity. The 
data so excluded in the optimization procedure are 
indicated on Figs 24 and 25. 

3.5. Results 
A summary of the parameters that gave the best fit for 
each of the three equations is given in Table III ,  
together with the associated minimum R overall. 
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suspensions 

It can be seen that the best model equation was 
different for each size fraction. The fines were best 
fitted by the Cheng equation, the mediums by Mooney 
and the coarse by the Krieger-Dougherty equation 
(Figs 23, 24 and 25). The implications of this finding 
are discussed in Section 4.3.1. 

The Krieger-Dougherty equation was clearly 
superior for fitting the coarse suspension. This was 
evident from the distinctly small minimum R com- 
pared with the other two and was also apparent when 
the fitted curves were compared with the data points 
on the graph (not shown here). The superiority of a 
given equation was, however, not obvious for the 
other two suspensions. For  the fines, plotting the best- 
fit curve on Fig. 23 showed that the Krieger-Dougherty 
equation looked just as good as the Cheng equation. 
Similarly, the Krieger-Dougherty equation seemed 
also to fit the mediums, although the Mooney gave the 
lower minimum R. To check on this the actual resi- 
dues were plotted on Figs 26 and 27. Fig. 26 shows 

TABLE I I I  Results of curve fitting for h(~,) 

Equation Mooney Krieger-Dougherty Cheng 

p a r a m e t e r s  v m Vm, k Vm, A, B 

0.559 0.987, 10.8 i 0.490, 12.8, 38.2 ] 
fines (0.539) (0.057) (0.032) 

l J 

0.538, 3.6 0.527, 0.0, 0.0 
medium (0.346) (0.437) 

1.000 0.497, 1.2 1.000, 0.0, 0.0 
coarse (0.777) (0.425) (0.764) 

[] final best-fit equation for each size fraction 
( ) minimum average residue 
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that the residues were indeed less scattered about the 
Cheng equation. Fig. 27 shows that neither equations 
were really a good fit because the data points clearly 
oscillated about the best-fit curves. However, the data 
points for the Mooney equation were mostly closer to 
the best-fit curve than the Krieger-Dougherty and so 
it can be confirmed as the better-fit of the two. 

However, looking at Figs 26 and 27, it must be said 
that the differences between the pairs of equations 
were marginal. In other words, the Krieger-Dougherty 
equation could equally well have been accepted as the 
best fit for the fines and medium suspensions, as it was 
the best fit for the coarse. 

3.6. Prediction of viscosity 
The best-fit equations were used to regenerate ~/(~ 
for the monomodal, bimodal and trimodal suspen- 
sions for comparison with the experimental data 
(Figs 26 to 29). The spread about the 1:1 line is of the 
order of a factor of 2. 

The best-fit equations were also used to predict ~/~) 
against composition curves for the fines 4- mediums 
bimodal suspension (Figs 30 to 32) and constant ~/(R 3) 
contours for the trimodal suspension (Figs 33 to 38). 
Further discussion of these predictions is given in 
Section 4.4. 

4. Discussion 
4.1. Assumptions made in the viscosity 

measurement 
The measurement of the viscosity of high solids con- 
tent or dense suspensions is not a straightforward 
problem. In a series of papers [2, 3], it has been 
shown that the measured viscosity values depend on 
the geometry of the viscometer and the actual dimen- 
sions of the measuring system used. The reason for 
this is the subject of active research, but it seems 
clear that this is due to the two-phase nature of sus- 
pensions. The particles respond to different flow 



0.3 

Z 

0.2 

~) 0.1 

LU 

0.1 

0.2 

I I I l 

10 20 30 40 
(%) 

50 

Figure 26 Plot of residues to check good- 
ness of fit to viscosity function for fines sus- 
pensions. (O Krieger-Dougherty equation, 
[] Cheng equation). 

fields by taking up different spatial arrangements or 
structures. The practical consequence of  this is that 
measurement results obtained in one geometry-size of  
viscometer cannot be applied to another  geometry-  
size. It  is, therefore, very important  to bear in mind the 
end-use of  the results in the choice of  viscometers. 
If, for example, the results are to be used for engineer- 
ing applications such as pipe flow, then a tube vis- 
cometer is appropriate.  For  agitator design and sizing, 
rotational instruments using scaled-down impellers 
should be used. For  a qualitative assessment of  the 
viscosity, when the general characteristics of  a product  
are being studied, several viscometers of  different 
geometries and sizes should be used in order to obtain 
a consensus. 

In view of this background, the present results 
cannot, therefore, be considered to be a complete 
scientific description of the viscosity of  the dental 
suspensions. As they are obtained on a tube viscometer, 
however, they are relevant to pipe flow situations such 
as that obtained in a dispensing machine. How relevant 
they are in relation to the workability as perceived by 
the dentist is uncertain. Until further research has 
been carried out, we can use the present results as a 
qualitative indicator of  this charcteristic. It is with 

these provisos on the significance of  these results that 
the data analysis has been carried out. 

In addition to the foregoing, various assumptions, 
explicit and implicit, were made in this work. They are 
discussed here. 

4. 1.1. Sol ids concentrat ion 
It was tacitly asumed in this work that the solids 
concentration in the viscometer tube was the same as 
that in the reservoir. Although the delivered con- 
centration can, under appropriate  conditions, be the 
same as that in the reservoir, that in the tube is signifi- 
cantly lower. This was found to be the case for low 
concentrations, up to about  20% [17]. At very high 
concentrations, however, it had been shown that even 
the delivered concentration was different [18]. It  was in 
fact lower, so that as a test progressed the concen- 
tration in the reservoir increased, until the solids 
became so densely packed that jamming resulted [2]. 
The results of  Cloete et al. [18] showed that the tube 
concentration was higher than delivered. 

In this work, because of industrial constraints, no 
check was carried out on the delivered or the tube 
concentration. As some specific relationship can be 
expected between the tube concentration and that in 
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Figure 28 Comparison of experimental data plotted against 
calculated viscosity for monomodal fine suspensions. 

the reservoir given the particular material studied, it 
was considered that the data analysis based on the 
reservoir concentration as originally loaded, even if 
not strictly accurate, can be of  practical use. 

4. 1.2. Pressure measurement 
In this work, it was assumed that the pressure 
measured, which was a radial pressure on the side of  
the reservoir, can be equated with the axial pressure 
that is required to calculate the wall shear stress in the 
tube. While pressure is isotropic in a liquid, this is not 
the case in a dense suspension. The relation between 
radial and axial pressure in a densely packed compact 
of  granular solids is given by the Rankin law (given in 
any soil mechanics book). It can be expected that 
similar relations exist in dense suspensions. In addition, 
in viscoelastic fluids, the normal stresses are different 
in different directions and this is another reason why 
the radial pressure may not be the same as the axial 
pressure. 

The Davenport  Rheometer is not equipped for axial 

pressure measurement. Again, as some definite relation 
is expected to exist between axial and radial pressure 
in the suspensions under study, it was considered that 
equating the two pressures would give results that are 
at least useful in a qualitative manner. Future work is 
being planned to measure the axial as well as the radial 
pressure. 

4. 1.3. End-effect correction 
An approximation was involved in using the pressure 
drop in the orifice die as the end-effect correction. This 
is because the velocity and pressure fields after the 
orifice are not exactly the same as that in the entrance 
length of  the tube. However, the error involved is 
thought to be acceptable [6]. In any case the approxi- 
mation is much less significant compared with the 
other assumptions discussed above. 

4. 1.4. Tube diameter effect 
Section 2.4.6 shows that there was a definite tube 
diameter effect on the suspension viscosity and that 
this cannot be attributed to wall-slip effect alone. In 
the literature (see refs [9, 10] and those quoted in refs 
[7, 22-27]) there is considerable discussion of particle 
migration and it seems clear that this is the cause of  
the tube diameter effect. On a microrheological level, 
even the wall slippage phenomenon has and origin in 
particle movement away from the tube wall, either due 
to tubular pinch effect [21] or the radial-migration 
effect [9]. Other authors [2, 7, 22-27] have discussed 
the topic and showed that a proper understanding of 
the behaviour of suspensions in tube flow can only be 
obtained by taking the particle migration effect into 
account. This has a bearing on solids concentration in 
the tube also (Section 4.1.1). 

As noted in Section 2.4.6, not enough measure- 
ments have been carried out in this work to determine 
the trend of tube diameter effect. The variations 
observed have been treated as experimental scatter. 

4.2. T e m p e r a t u r e  c o r r e c t i o n  
The assumption made that the relative viscosity was 
independent of temperature implies that the energy 
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dissipation in the suspension had an origin in viscous 
dissipation in the suspending liquid only. It implies 
that there was no loss when particles collide (i.e. 
that "dry"  frictional effect was absent) and that the 
adsorbed surfactant molecules do not bring colloidal- 
chemical effects into play. This assumption is consist- 
ent with the assumptions of the Farris theory. How far 
it is valid can only be assessed experimentally. 

4.3. V i scos i t y - concen t ra t i on  equat ions ,  h i (q~i) 
4.3. 1. Significance of the best-fit equations 
Three viscosity-concentration equations were assessed 
in this work and it was found that, on the basis of 
minimum average residue R, different equations were 
best fitted to different size fractions (Section 3.5 and 
Table III). The significance of  this is considered in this 
section. 

Many of the viscosity-concentration equations 
found in the literature were empirically derived and 
have no more significance other than as being useful 
for curve fitting, to summarize data for interpolation 
and limited extrapolation. 

Some equations were derived from basic consider- 
ations of molecular or particle dynamics and it 
is generally thought that they have fundamental 
significance. In a number of cases, parameters of an 
equation can be evaluated by independent means and 
compared with values derived from viscosity measure- 
ments. This would be a check of the validity of the 
equation's fundamental significance. 

However, in the majority of cases, the derivation of  
the viscosity-concentration equation did not take all 
the physical and chemical factors into account and the 
fundamental significance cannot, therefore, be con- 
sidered to be comprehensive. If one such equation 
happens to fit a set of experimental data, this can only 
be considered fortuitous, although of course, the 
equation is just as useful for data fitting. 

In this work, the three equations used were all 
derived from basic considerations and one might be 
tempted to discuss their fundamental significance. 

However, because we do not have independent verifi- 
cation of the values of the parameters and in view of 
the various reservations discussed in Section 4.1, we 
did not pursue this line of investigation too far. The 
three best-fit equations were therefore accepted as 
empirical and were used in making predictions in 
Section 4.4. 

4.3.2. Effect of Particle size 
It would not be easy, even if it is possible, to consider 
the effect of particle size and/or PSD on hi(~0i) if 
equations of  different functional forms apply to 
different fractions. In view of  the generally large 
scatter in the experimental data, however, the 
Krieger-Dougherty equation could equally well have 
fitted the suspensions of fines and medium particles 
(see Section 3.5). The effect of particle size can 
therefore be assessed in terms of  this equation. 

The best-fit Krieger-Dougherty parameters for the 
three size fractions are given in Table III. All the 
values seem sensible, except for v m = 0.987 for the 
fines. Such a high value is theoretically possible if a 
fraction had a very long "tail" towards the very small 
sizes; then the particles can pack into a very dense 
packing. It is, however, not possible in practice 
because when the particles become submicrometre in 
size, colloidal forces would come into play. Neverthe- 
less, the result suggests that v m is high for the fines. 

In the study of  the effect of PSD, the measured 
size distribution can be reduced to the four moments, 
corresponding to the mean, standard deviation, 
skewness and kurtosis. It is known [28] that these 
quantities are sufficient to represent the distributions. 
They can be used to correlate with the Krieger- 
Dougherty parameters. 

From the particle size distribution data for the 
medium and coarse particles, we have extracted ds0 
and (dvs/d25) as measures of the mean and standard 
deviation and tabulated them in Table I. It can be seen 
that the PSD broadened as the mean size was reduced. 
No detailed information on particle size distribution 
was available for the fines, but estimates were made 
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Figure 32 Predicted viscosity for bimodal (fines + mediums) sus- 
pensions. 

using the fact that the limiting ratio of  successive sizes 
should be about 1:10 and that the PSD broadened 
with decreasing size. 

The correlations of Vm and k with PSD are attempted 
on Fig. 39. V m is the dense-packing volume fraction 
and it is expected to correlate with standard deviation 
or (d75/d25). This seemed to be borne out by the data: 
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Figure 33 Predicted viscosity for bimodal (mediums + fines) sus- 
pensions. 
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Figure 34 Predicted viscosity for (fines + coarse) suspensions. 

Vm increased as the PSD broadened, k is the intrinsic 
viscosity and again it is expected to be dependent on 
standard deviation and not on the mean size. This can 
be seen from the theory of Farris when applied to 
mixtures of single-sized fractions of spherical particles 
[7]. The viscosity concentration curve is shifted such 
that the intrinsic viscosity is reduced as the number 
of different size modes in the mixed suspension is 
increased. The present results in contrast show that k 
increased as (d75/d25) was increased. 

These correlations between Vm and k with PSD can 
be used to predict the Krieger-Dougherty equation 
from a knowledge of PSD, and hence to predict mix- 
ture viscosity. This justifies further research on the 
viscosity of suspensions of further different sizes, to 
confirm the PSD effect. 

4.4. Prediction of minimum viscosity 
An important aim of the data analysis is to obtain hi 
(~oi) so that bimodal and trimodal compositions that 
have minimum viscosities can be predicted. The 
results of the predictions are given in Figs 32 to 38. 

The predictions for the bimodal suspensions, Figs 
32 to 34, show that at constant low total solids con- 
centration v, the viscosity is in fact lower if the particle 
fractions are not mixed. On Fig. 32 below v = 45%, 
the medium particles on their own would give the 
minimum viscosity at any v; on Fig. 33, this happens 
with the coarse particles below 30%; and 45% on 
Fig. 34. The reason for this is that the size fractions 
were not truly monomodal  and the PSD may be near 
the minimum viscosity for that mixture. Adding further 
smaller particles to them only moves the viscosity up 
onto the incline. 

The figures show however, that when v is very high, 
50% and above, the mixture did possess a viscosity 
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Figure 35 Predicted viscosity for trimodal 
suspensions at 40% total concentration. 

18 

F 

minimum. It is interesting to note, for example that the 
minimum ~/R at 50% is about 200 for the fines + 
mediums, whereas it is only 5 for the fines + coarse 
mixtures. This illustrates the wide scope for the design 
of suspensions. 

The predictions for the trimodal mixtures, Figs 35 
to 38, show a similar behaviour. At low v, no mini- 
mum was found within the triangular diagram and the 
minimum at a given v is found on the bimodal edge. 
It is only at high enough v, for example Fig. 38, that 
the minimum is located within the diagram. 

These predictions summarize the measurement results. 
It is not obvious from the untreated results (Figs 3 to 
13, or even Figs 14 to 17) how one can predict the 
compositions for minimum viscosity. The summary, 
however, in the form of Figs 32 to 38, will readily 
allow this to be done. 

5. Conclusions 
The suspensions studied were found to be highly non- 
Newtonian. The typical behaviour appeared to be a 
sigmoid flow curve, with a yield stress at low enough 
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Figure 36 Predicted viscosity for trimodal 
suspensions at 50% total concentration. 
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C Figure 37 Predicted viscosity for trimodal 
oo suspensions at 60% total concentration. 
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shear rate and curving over to a constant shear stress 
at high enough shear rate. The inflexion shear rate 
decreased with increasing concentration. 

The viscosity at 100sec ~ (Section 2.4.3) was 
analysed for particle size and PSD effects. Farris' 
theory for mixtures of monomodal suspensions was 
extended to mixtures made up of size fractions that 
were not uniquely sized involving three different 
viscosity-concentration functions hi(~0i) , i = 1, 2, 3. 
Those functions were found to be fitted by different 
equations, Cheng, Mooney and Krieger-Dougherty 
respectively. They reproduce the experimental data 
to within a factor of 2 either way, which is good 

C 

F 
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M 

agreement for suspensions of such high solids content. 
The best-fit functions, hi(~0i), were used to calculate 

the viscosity of bimodal and trimodal suspensions and 
to predict the compositions at which the viscosity is 
minimum. The results (Figs 32 to 38) show that at low 
total solids, the minimum viscosity is not obtained 
with mixtures in bimodal systems or located within the 
triangular diagram for trimodal systems. This was due 
to the size fractions being mixtures in themselves. It 
was only at very high total solids that viscosity minima 
were obtained with bimodal mixtures or within the 
triangular diagram. 

It can be concluded that Farris' theory, as extended 

Figure 38 Predicted viscosity for trimodal 
suspensions at 70% total concentration. 
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Figure 39 Effect of PSD on Krieger-Dougherty parameters. 

in this paper, can be useful in analysing experimental 
data to determine the viscosity functions hj(~oi) for 
different size fractions. They can also be used to deter- 
mine minimum viscosity conditions when the fractions 
are combined in different mixtures. 

The methodology described for the analysis of sus- 
pension viscosity data comprises the reduction of 
measurement results to the viscosity functions hi(~i), 
for the monomodal size fractions and curve-fitting 
them to viscosity-concentration equations. The 
extended Farris theory can be used to predict vis- 
cosities for mixtures not measured experimentally, 
useful in the formulation of industrial products. 
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